The Fundamental Isomorphism Conjecture via Non-commutative Motives

نویسنده

  • PAUL BALMER
چکیده

Given a group, we construct a fundamental additive functor on its orbit category. We prove that any isomorphism conjecture valid for this fundamental additive functor holds for all additive functors, like K-theory, cyclic homology, topological Hochschild homology, etc. Finally, we reduce this fundamental isomorphism conjecture to K-theoretic ones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mother of All Isomorphism Conjectures via Dg Categories and Derivators

We describe a fundamental additive functor Efund on the orbit category of a group. We prove that any isomorphism conjecture valid for Efund also holds for all additive functors, like K-theory, (topological) Hochschild or cyclic homology, etc. Finally, we reduce this universal isomorphism conjecture to K-theoretic ones, at the price of introducing some coefficients.

متن کامل

Extensions of Strictly Commutative Picard Stacks

Let S be a site. We introduce the notion of extension of strictly commutative Picard S-stacks. Applying this notion to 1-motives, we get the notion of extension of 1-motives and we prove the following conjecture of Deligne: if MRZ(k) denotes the integral version of the neutral Tannakian category of mixed realizations over an algebraically closed field k, then the subcategory of MRZ(k) generated...

متن کامل

The sum-annihilating essential ideal graph of a commutative ring

Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...

متن کامل

The Isomorphism Relation Between Tree-Automatic Structures

An ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-treeautomatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative gro...

متن کامل

Motives and Deligne’s Conjecture

Deligne’s conjecture [Del] asserts that the values of certain L-functions are equal, up to rational multiples, to the determinants of certain period matrices. The conjectures are most easily stated for projective, smooth varieties over number fields. Such a variety has an L-function whose local factors encode Frobenius eigenvalues. The isomorphism between de Rham and Betti cohomologies gives a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010