The Fundamental Isomorphism Conjecture via Non-commutative Motives
نویسنده
چکیده
Given a group, we construct a fundamental additive functor on its orbit category. We prove that any isomorphism conjecture valid for this fundamental additive functor holds for all additive functors, like K-theory, cyclic homology, topological Hochschild homology, etc. Finally, we reduce this fundamental isomorphism conjecture to K-theoretic ones.
منابع مشابه
The Mother of All Isomorphism Conjectures via Dg Categories and Derivators
We describe a fundamental additive functor Efund on the orbit category of a group. We prove that any isomorphism conjecture valid for Efund also holds for all additive functors, like K-theory, (topological) Hochschild or cyclic homology, etc. Finally, we reduce this universal isomorphism conjecture to K-theoretic ones, at the price of introducing some coefficients.
متن کاملExtensions of Strictly Commutative Picard Stacks
Let S be a site. We introduce the notion of extension of strictly commutative Picard S-stacks. Applying this notion to 1-motives, we get the notion of extension of 1-motives and we prove the following conjecture of Deligne: if MRZ(k) denotes the integral version of the neutral Tannakian category of mixed realizations over an algebraically closed field k, then the subcategory of MRZ(k) generated...
متن کاملThe sum-annihilating essential ideal graph of a commutative ring
Let $R$ be a commutative ring with identity. An ideal $I$ of a ring $R$is called an annihilating ideal if there exists $rin Rsetminus {0}$ such that $Ir=(0)$ and an ideal $I$ of$R$ is called an essential ideal if $I$ has non-zero intersectionwith every other non-zero ideal of $R$. Thesum-annihilating essential ideal graph of $R$, denoted by $mathcal{AE}_R$, isa graph whose vertex set is the set...
متن کاملThe Isomorphism Relation Between Tree-Automatic Structures
An ω-tree-automatic structure is a relational structure whose domain and relations are accepted by Muller or Rabin tree automata. We investigate in this paper the isomorphism problem for ω-tree-automatic structures. We prove first that the isomorphism relation for ω-treeautomatic boolean algebras (respectively, partial orders, rings, commutative rings, non commutative rings, non commutative gro...
متن کاملMotives and Deligne’s Conjecture
Deligne’s conjecture [Del] asserts that the values of certain L-functions are equal, up to rational multiples, to the determinants of certain period matrices. The conjectures are most easily stated for projective, smooth varieties over number fields. Such a variety has an L-function whose local factors encode Frobenius eigenvalues. The isomorphism between de Rham and Betti cohomologies gives a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010